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Nucleus? 

If not, surprising!!

Clustering in Universe

Subject of clustering transcends many areas of science, from clusters of galaxies to 
clusters of micro-organisms, which obviously encompasses atomic, nuclear and sub-

nuclear domains also [W. Greiner, Z. Phys. A 349, 315 (1994)].



The discovery of alpha (α) decay in the heavy nuclei prompted the idea that
nucleus can be visualized as being composed of α particles as building block
[G. Gamow, Z. Phys. A 51, 204 (1928)].

 The α clustering, specifically in the light alpha conjugate nuclei with N=Z
has been examined extensively. The famous 'Hoyle state' i.e. 12C consisting of
three alpha particles was predicted theoretically in 1953 [F. Hoyle et al., Phys.
Rev. 92, 1095 (1953)] and later on found experimentally in 1957 [C.W. Cook
et al., Phys. Rev. 107, 508 (1957)].



Fig: Ikeda threshold diagram for N=Z (or nα) nuclei 

Ikeda suggested that these alpha cluster states are not predominant in
the ground state but manifest near the cluster decay threshold energies
[Ikeda et al., Prog.Theor. Phys. Suppl. E 68, 464 (1968)].



Fig: Modified Ikeda diagram showing molecular
structures and the associated excitation energy.

Oertzen et al. extended the work of alpha cluster structure of Ikeda, to the case
of the light neutron rich nuclei and proposed that these nuclei can be speculated as
alpha core with valence neutrons [Oertzen et al., Eur. Phys. J. A 43, 17 (2010)].

Fig: Pictorial representation of
energetic advantage of clustering
for nuclear matter at neutron drip
line in order that valence neutrons
(red) can maximize their
interaction with the core nucleons
(blue).



 In nuclear dynamics, as seen in light stable nuclei, clustering is one of
the essential features and various cluster structures have been known
even in the low-energy region.

 Also, in the physics of unstable nuclei, clustering features comprise one
of the central subjects.

 It is already well known [Y. Kanada-En’Yo, M. Kimura, and H.
Horiuchi, C. R. Phys. 4, 497 (2003) and earlier references therein] that
clustering structures appear in the ground states of light nuclei with N=Z
or in their neighborhood.

 When cluster structures are prominent, the description by conventional
mean-field models based on the shell-model-like picture becomes
insufficient.

 Fortunately, the properties of light nuclei with cluster structures have
been well studied with cluster models where the existence of clusters is
assumed a priori.



 This assumption, however, sets a limitation for applying the cluster
models to “exotic” (unstable) nuclei, where structural information
is rather scanty.

 Thus, a model that could explain both the mean-field and
clustering properties of nuclei would be helpful to obtain a
systematic understanding of both the stable and exotic nuclei.

 Examples of such successful frameworks are the methods of
Fermionic molecular dynamics (FMD) [H. Feldmeier and J.
Schnack, Rev. Mod. Phys. 72, 655 (2000)] and antisymmetrized
molecular dynamics (AMD) [Y. Kanada-En’Yo and H. Horiuchi,
Prog. Theor. Phys. Suppl. 142, 205 (2001)].

 Both of which describe well the structural properties of several
nuclei and their excited states, in the lighter mass region.



 Another model, which is capable of explaining the clustering
shapes in light nuclei is the relativistic mean field theory
(RMFT) [S. K. Patra, C.-L. Wu, C. R. Praharaj, and R. K.
Gupta, Nucl. Phys. A651, 117 (1999)].

 This theory has been successfully applied to nuclei
throughout the nuclear chart and, with some extensions, also
to nuclear matter and neutron stars.



 In this work, for the first time the applicability of the RMFT was explored
for explaining the possible cluster structures in lighter mass stable and exotic
nuclei.





Nucleonic matter — the protons and neutrons that comprise atomic
nuclei — acts predominantly as a quantum liquid, but lighter nuclei
behave more like molecules composed of clusters of protons and
neutrons.

Clustering is related to the overall nuclear interaction, but its
detailed mechanism is not fully understood.

These authors use theoretical modeling to calculate the conditions
that cause clustering in 20Ne, a small nucleus thought to favor
clustering.



The density calculated with SLy4 displays a smooth behavior characteristic of a Fermi
liquid, with an extended surface region in which the density very gradually decreases from
the central value of around 0.16 fm-3 (Fig. 1b).
The relativistic functional DD-ME2, on the other hand, predicts an equilibrium density
that is much more localized. The formation of cluster structures is clearly visible, with
density spikes as large as roughly 0.2 fm-3, and a much narrower surface region (Fig. 1a).



 DD-ME2 predicts a much more localized density distribution (Fig. 2a)
 Localization of densities that correspond to single-particle orbital is a necessary
precondition for the formation of clusters.



 The cluster structures are predicted in the case of alpha and non-alpha conjugate
nuclei from 8Be to 40Ca [Yahmaya et al., Phys. Lett. B 306, 1 (1993); M Freer, A C
Merchant, J. Phys. G: Nucl. Part. Phys. 23, 261 (1997 ); G. V. Rogachev et al., PRC
64, 051302(R) (2001]. Experimentally, the cluster structures are probed through
cluster knock out, capture reactions etc. [R.K. Sheline et al., Nucl. Phys. 21, 196
(1960); F.D. Becchetti et al., Nucl. Phys. A 339, 132 (1980); D. Jenkins, J. Phys.
Conf. Series 436, 012016 (2013)].

The heavy ion reactions at low energy are useful tool to study the cluster
structure of decaying composite nucleus formed during the course of reaction.
Several attempts have been made to explore the role of clustering on the reaction
mechanism of alpha conjugate systems i.e. 16O+12C,20Ne+12C, 28Si+12C etc. [K.
Daneshvar et al., PRC 25, 1342 (1982); D. Shapira et al., Phys. Lett. 114B, 111
(1982); A. Dey et al., PRC 76, 034608 (2007); S. Kundu et al., PRC 78, 044601
(2008)].

During last decades, the decay of several light and medium mass nuclei with
mass~ 20-40 have been studied to explore the reaction mechanisms. It is interesting
to explore the clustering effects in the decay of composite systems formed in heavy
ion reactions.



The decay of composite systems with the mass varying from light to heavy, super
heavy regions have been studied successfully within the collective clusterization
process of dynamical cluster decay model (DCM) [R.K. Gupta et al., PRC 68,
014610 (2003); Lecture Notes in Physics, Clusters in nuclei, edited by C. Beck,
818, 223 (2010)].
DCM is based upon the well established quantum mechanical fragmentation
(QMFT) theory. The QMFT based study supports the 14C clustering in 18,20O, 22Ne
systems with inclusion of modified temperature dependent pairing strength δ(T) in
the liquid drop energies [M. Bansal et al., J. of Phys. Conf. Series 321, 012046 (2011)].

Fig: The variation of pairing constant with temperature
obtained from QMFT based model [R. K. Gupta et al.,
Int. Rev. Phys. 2, 369 (2008)] calculations, compared
with that used by Davidson et al. [N. J. Davidson et al.,
Nucl. Phys. A 570, 61c (1994)]



Here, the clustering effects in light mass N=Z (20Ne*, 28Si*,40Ca* ) and
NǂZ composite systems (21,22Ne*, 39K*) formed in low energy heavy ion
reactions at different excitation energies, within the collective
clusterization approach of the dynamical cluster-decay model (DCM)
based on quantum mechanical fragmentation theory (QMFT), are
presented.

A comparative decay analysis of these systems has been undertaken for
the emission of different intermediate mass fragments (IMFs)/clusters,
specifically the IMFs having Z=3, 4 and 5 (or Z=7, 6 and 5 complimentary
fragments from the 20Ne* and 21,22Ne* composite systems) which are
having the experimental data available for their Z-distribution [M.M.
Coimbra et al., NPA 535, 161 (1991); S. Kundu et al., PRC 85, 064607
(2012); Parmana J. Phys. 82, 727 (2014)].

The study reveals the presence of competing reaction mechanisms of
compound nucleus (fusion-fission, FF) and of non-compound nucleus
origin (deep inelastic orbiting, DIO) in the decay of very light mass
composite systems 20,21,22Ne* and 28Si * at different excitation energies



Methodology
 To study ground state emissions of nucleus and emissions of excited

compound nucleus (CN) in heavy ion reactions, Gupta and collaborates
developed the dynamical (or quantum mechanical) fragmentation theory, in
the form of PCM and DCM, which uses collective coordinates of QMFT:

 The mass and charge asymmetries η = (𝐴𝐴1− 𝐴𝐴2)
(𝐴𝐴1+ 𝐴𝐴2)

and ηz=
(𝑍𝑍1− 𝑍𝑍2)
(𝑍𝑍1+ 𝑍𝑍2)

. 

 Deformations βλi, orientations θi of two fragments.
 Relative separation co-ordinate R.

For the ground state decay 
(T=0, ℓ=0) of nucleus, the decay 

constant λPCM is defined as

Using the partial wave analysis, for 
the hot and rotating (T≠0 and ℓ≠0) 

CN, the decay cross-section is 
defined as

𝝀𝝀𝑷𝑷𝑷𝑷𝑷𝑷 =
ln 2
𝑇𝑇1/2

= ν0𝑃𝑃0𝑃𝑃 σ𝑫𝑫𝑷𝑷𝑷𝑷 = 𝜋𝜋
𝑘𝑘2
∑=0
𝑚𝑚𝑚𝑚𝑚𝑚(2 + 1)𝑃𝑃0𝑃𝑃 ; 𝑘𝑘 = 2𝜇𝜇𝜇𝜇𝐶𝐶.𝑀𝑀

2



which we get by solving Schrödinger equation in η-coordinates

Here VR(η, T)  is the fragmentation potential and is defined as:

VC, VP and V are respectively the temperature dependent Coulomb, 
nuclear proximity and angular momentum dependent potentials.

P is the penetrability, refers to the R-motion, calculated by the WKB approximation

The preformation probability  is given by

𝑃𝑃0 = 𝜓𝜓𝑅𝑅(η 𝐴𝐴𝑖𝑖 ) 2 𝐵𝐵𝜂𝜂𝜂𝜂
2
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Fig1: Preformation profile of alpha conjugate system (a)20Ne* (b)28Si* at zero energy, resonant
energy [K. Ikeda et al., Prog. Theor. Phys. (Suppl.) E 68, 464 (1968)] and experimental available
energy [M. M. Coimbra et al., Nucl. Phys. A 535, 161 (1991)]
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Fig2: Preformation profile of non-alpha conjugate system (a)21Ne* (b)22Ne* at zero energy, resonant
energy [W. Von Oertzen et al., Eur. Phys. J. A 11, 403 (2001)] and experimental available energy
[M. M. Coimbra et al., Nucl. Phys. A 535, 161 (1991)]
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Fig3: Variation of the fragmentation potential V with fragment
charge Z for A2=4 fragment, for the decay of non-α conjugate
system 22Ne* at T-values of their corresponding excited resonant
state and the experimentally available excited state [M.M.
Coimbra et al., Nucl. Phys. A 535, 161 (1991)].

At resonant excitation energies (given by
Ikeda) xα type and nx-nα clusters appear
while at experimental available energy, np-
xα type clusters also appear.

Thus the temperature dependent pairing
energy plays an important role in clustering.
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Fig.4: Variation of fragmentation potential V with fragment mass A for the decay of α-conjugate
systems (a) 20Ne* (b) 28Si * and (c) 40Ca*

 For 20Ne*, at ℓ=0ћ the LPs are in strong competition with IMFs but at ℓ=ℓc , the binary symmetric
decay (10B) is in strong competition with neighboring IMFs (6Li, 14N).
For 28Si*, at ℓ=0ћ the LPs are more energy minimized compared to IMFs but at ℓ=ℓc , the binary
symmetric decay (14N) is strongly competes with neighboring IMFs (12C, 16O).
For 40Ca*, at ℓ=0ћ the LPs are more energy minimized compared to IMFs but at ℓ=ℓc , the IMFs
(8Be, 10B) are more favorable than the binary symmetric decay (20Ne).
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 20Ne* system clearly demonstrate the probable binary symmetric cluster configuration with the
IMF, 10B (2α+p+n) at higher T-value showing the large preformation yield, as observed also in RMFT
for intrinsic excited states of 20Ne [P. Arumugam et al, PRC 71, 064308 (2005)], and also for the
calculations within formalism of EDF for 20Ne [J. P. Ebran et al., Nature (London) 487, 341 (2012)].

28Si* system at different T-values, present the most probable binary symmetric cluster configuration
with IMF 14N (3α+p+n) at higher T-value showing the largest preformation yield in comparison to
lower T-values. The α-clusters 16O and 20Ne, have strong competition from 18F (4α +p+n) and 22Na (5α
+p+n) respectively.
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For NǂZ composite system 21Ne* demonstrate that the 13C (3α+n) cluster is still dominant at higher T-
value with competing binary near symmetric cluster configuration with the IMFs 10B (2α+p+n) and 11B
(2α+p+2n) and 17O (4α+n) cluster configuration is now not favored. Other clusters/ IMFs 14N (3α+p+n)
and 15N (3α+p+2n)are strongly competing with other new possibilities.
For 22Ne*, non-α cluster 14C is replaced by the IMF 14N (3α+p+n) competing strongly with the binary
decay. The IMF 15N (3α +p+2n), 16N (3α+p+3n) and 18F (4α+p+n) are also having small maxima. Note
that 18O (4α+2n) is replaced by 18F (4α+p+n) at higher excitation energies.
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Fig7: Variation of penetration probability (P) with cluster mass the decay of α-conjugate
systems (a) 20Ne* (b) 28Si * and (c) 40Ca*

At ℓ= ℓc, the Penetrability approaches 1 while at low angular momentum in case of (a)20Ne* , the 10B
cluster is having the least P while it is preformed strongly and 11,12C and 13,14,15N have the higher value of P.
In case of (b) 28Si* at low angular momentum, the 7Li has the least P and other clusters 5,6Li, 8Be, 9,10B
have higher P.
In case of (c)40Ca* also, at low angular momentum, the 7Li has a less P-value in comparison to 5,6Li, 8Be
and 9,10B, whereas the 20Ne cluster is having least P although it has high value of P0.
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Fig8: Variation of penetration probability (P) with cluster mass the decay of non-α
conjugate systems (a) 21Ne* (b) 21Ne* and (c) 39K*



In particular case of BSD i.e. Z=5, for 20Ne*

the ff is the decay mode up to Ec.m.=24 MeV,
afterwards the DIO starts competing with ff.
For Z=6,7 case, the ff and DIO shows
competition.

In case of 28Si* with increase of energy,
ff contribution remains almost same while
the % contribution of DIO shows increase.
The % contribution of DIO is maximum
near the entrance channel(i.e. Z=5).



For 21Ne* ; for Z=5 the ff contribution increases with increase in energy while for Z=6,7 the ff shows
increase with energy but at higher most energy the ff contribution decreases.
For 22Ne*; for Z=5 ff is the decay mode up to Ec.m.=25 MeV. For Z=6,7 case, the ff and DIO shows
competition.
For 39K*; the ff cross-sections are well reproduced for the Z=3,4 while for Z=5 we are not able to obtain
a good agreement with experimental data.



 QMFT supports [[PRC 95, 014611 (2017)], clustering in N=Z (20Ne * and 28Si *) and
NǂZ (21Ne* and 22Ne *) nuclear systems at excitation energies corresponding to their
respective decay thresholds/resonant-state energies for the 4α, 16O cluster and non-α
cluster 14C (more so in 22Ne* NǂZ composite system), supported by the Ikeda diagrams,
taking into account the proper pairing strength in the temperature dependent liquid drop
energies.

Within the DCM, we notice that at higher excitation energies in addition to xα (where
x is an integer) type clusters from N=Z composite systems and xn-xα type clusters from
NǂZ composite systems, np-xα type clusters are relatively quite dominant, with larger
preformation probability due to the decreased pairing strength at higher temperatures in
the liquid drop energies.

Also, the study reveals the presence of competing reaction mechanisms of compound
nucleus (fusion-fission, FF) and of non- compound nucleus origin (deep inelastic
orbiting, DIO) in the decay of very light mass composite systems 20;21;22Ne* and 28Si * at
different excitation energies.

The DIO contribution in the intermediate mass fragments (IMF) cross section σIMF is
extracted for these composite systems, σIMF is given as the sum of FF cross section σFF
and DIO cross section σDIO. The DCM calculated FF cross-sections σDCM

FF are in good
agreement with the available experimental data.

Conclusion



32


	Slayt Numarası 1
	Slayt Numarası 2
	Slayt Numarası 3
	Slayt Numarası 4
	Slayt Numarası 5
	Slayt Numarası 6
	Slayt Numarası 7
	Slayt Numarası 8
	Slayt Numarası 9
	Slayt Numarası 10
	Slayt Numarası 11
	Slayt Numarası 12
	Slayt Numarası 13
	Slayt Numarası 14
	Slayt Numarası 15
	Slayt Numarası 16
	Slayt Numarası 17
	Slayt Numarası 18
	Slayt Numarası 19
	Slayt Numarası 20
	Slayt Numarası 21
	Slayt Numarası 22
	Slayt Numarası 23
	Slayt Numarası 24
	Slayt Numarası 25
	Slayt Numarası 26
	Slayt Numarası 27
	Slayt Numarası 28
	Slayt Numarası 29
	Slayt Numarası 30
	Slayt Numarası 31
	Slayt Numarası 32

