A Dosimetric Comparison of 3D Conformal Therapy and Volumetric Modulated Arc Therapy For Treatment of Nasopharyngeal Carcinoma

> Bouchra Imene CHIBANE^{1, 2} F. BENRACHI¹ M. S. BALI² H.GOSSA¹

¹Laboratoire de Physique Mathématique et Subatomique, Frères Mentouri Constantine 1.Unv, Algérie

²ATHENA Medical Center Constantine, Algérie

- **1.** Introduction;
- 2. Radiotherapy techniques for nasopharyngeal cancers;
- 3. A dosimetric comparison of 3D conformal therapy and volumetric intensity modulated arc therapy;
- 4. Conclusion;

- External radiotherapy plays a very important role in the treatment of head and neck cancers;
- Nasopharyngeal cancer is one of the most frequent forms of H&N cancers in the Maghreb;
- Particularly close to certain organs such as the spinal cord, the brainstem or even the parotid glands, this localization requires special attention in the choice of external radiotherapy treatment techniques;

- Radiotherapy purposes:
- High radiation dose to tumor and areas at risk of invasion, for tumor control;
- A low dose to adjacent healthy tissue to avoid toxicities;

1. Introduction;

2. Radiotherapy techniques for nasopharyngeal cancers;

- 3. A dosimetric comparison of 3D conformal therapy and volumetric intensity modulated arc therapy;
- 4. Conclusion;

3D-CRT: Three-dimensional Conformal Radiotherapy :

- Developed in the early 90s;
- Use multi-leaf collimators;
- The beams follow the shape of the target volume;

3D-CRT: Three-dimensional Conformational Radiotherapy :

3D-CRT: Three-dimensional **C**onformational **R**adiotherapy :

V.M.A.T. = Volumetric Modulated Arc Therapy

- A new intensity modultion tehcnique particularly intresting because it greatly reduces the duration of irradiation.
- In VMAT we vary at the same time :
 - 1. The position of the gantry and its speed of rotation;
 - 2. The position of leaf and their speed of movement;
 - 3. The dose rate;

V.M.A.T. = Volumetric Modulated Arc Therapy

- This technique is based on generation of aditionnal volues around the PTV in order to obtain a high dose;
- Plans consists of two full arcs (clockwise and counter clockwise with a delivery delay of 120 sec per arc;

V.M.A.T. = Volumetric Modulated Arc Therapy

- The existance of two differents treatment techniques for the same localization implies asking several questions:
- What is the best technique that gives the patient precise treatment and a better quality of life ?
- Which technique gives the best dose coverage ?
- And which technique that most minimizes toxicity in OARs ?
- Our interest was in a dosimetric comparison between the two techniques

- **1.** Introduction;
- 2. Radiotherapy techniques for nasopharyngeal cancers;
- 3. A dosimetric comparison of 3D conformal therapy and volumetric intensity modulated arc therapy;
- 4. Conclusion;

- Methods:
- Patient characteristics:
- 10 patients NPC;
- Average age: 46 years;
- All patients received weekly concomitant chemotherapy treatment with cisplatine;
- Plans using both techniques:
- 3D conformational in sequential in 35 sessions;
- VMAT SIB in 33 sessions;

• Methods:

1st comparison: using DVH

Brainstem Dmax < 54Gy LPG V30< 50% RPG V30< 50%

- Methods:
- 2nd comparison: calculation of different indexes :
- (Target Couvrage-TC-) :

$$TC = \frac{V_{T,pi}}{V_T} \times 100$$

- TC > 95 %, treatment plan is acceptable
- (Conformity Index-CI-):

$$CI = \frac{V_{T,pi}}{V_{pi}}$$

- Methods:
- 2ndcomparison: calculation of different indexes :
- Homogeneity Index-HI-):

$$HI = \frac{D_{5\%} - D_{95\%}}{D_{mean}}$$

• ((Quality Index-QI-):

$$QI = \frac{D^{VMAT}}{D^{3D-CRT}}$$

• HI= 0

• Results:

1st comparison using DVH:

Volume	VMAT	3D-CRT	
Brainstem	49,69	58,55	
LPG	36.94	100	
RPG	38.55	100	
PTV 50	98.65	97.42	
PTV 70	96.44	93.23	

- •GP FULLY irradiated with 3D-CRT
- •Brainstem Dmax reduced with VMAT
- •TV coverage almoste comparable

• Results:

1st comparison using DVH:

• Results:

2nd comparison: calculation of diefferent indexes :

• PTV 50:

PTV 70:

Index	VMAT	3D-CRT	index	VMAT	3D-CRT
тс	98.65	97,42	тс	96,44	93,23
CI	0,65	0,4	CI	0,89	0,49
н	0,3	0,4	н	0,009	0,12

• For both TV:

- TC VMAT > TC RTC-3D
- CI VMAT > CI RTC-3D
- HI VMAT < HI RTC-3D</p>

• Results:

2nd comparison: calculation of differents indexes :

• Results:

2nd comparison: calculation of differents indexes :

• Toxicity:

	VMAT	3D-CRT	QI
Brainstem	49,69 🤇	58,55	0,84

QI < 1 VMAT less toxcic than 3D-CRT

- A significant dosimetric variation for the brainstem between to two plans;
- A significant preservation of the volumes of the two parotid glands using VMAT;
- The coverage of the target volume on DVH does not necessarily mean that the volume is well covered (confirmity index);
- The TC, CI, and HI are better in VMAT plans;
- The protection of OARs is best achieved with VMAT technique;

• VMAT technique in the treatment of NPC brings a significant gain in terms of:

Local tumor control (TC++++) Quanlity of life (toxicity----)

Thank you