Study of the astrophysical 25 Al(p, γ) 26 Si nuclear reaction

H. MEBREK¹, **M.** BOUHELAL² AND **D.** BAHLOUL³

¹PRIMALAB LABORATORY, DEPARTMENT OF PHYSICS, UNIVERSITY OF BATNA 1, ALGERIA ²LABORATOIRE DE PHYSIQUE APPLIQUÉE ET THÉORIQUE, DEPARTMENT OF MATERIAL SCIENCES, LARBI TEBESSI UNIVERSITY, ALGERIA

³HIGHER NATIONAL SCHOOL OF RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABLE DEVELOPMENT, ALGERIA

XIV. International Conference on nuclear Structure Properties (NSP2021), Konya-Turkey

Outline

- * Nuclear shell model and sd-shell nuclei.
- * Importance of Silicon in astrophysics.
- * Spectroscopic properties of ²⁶Si.
- * ²⁶Si excitations of interest for the thermonuclear ${}^{25}Al(p,\gamma){}^{26}Si$ reaction.
- * Rate of reaction through a narrow resonance.
- * Conclusion.

Nuclear shell model and sd-shell nuclei

Nuclear shell model and sd-shell nuclei

THE SD-SHELL NUCLEI ARE THOSE HAVING A NUMBER OF PROTONS (Z) AND NEUTRONS (N) BETWEEN 8 AND 20 (I.E NUCLEI FROM ¹⁶O TO ⁴⁰CA

Nuclear shell model and sd-shell nuclei

Importance of Silicon in astrophysics

As it is the eighth most abundant element in the Universe, silicon has a significant astrophysical interest. This element plays a crucial role in the comprehension of nucleosynthesis, especially, the galactic chemical evolution, which begins when gravitational contraction raises the stars core temperture to 2.7-3.5(GK).

Importance of Silicon in astrophysics

- *²³Al(p, γ)²⁴Si \longrightarrow Type I x ray bursts.
- *²⁵Al(p, γ)²⁶Si \implies Type I x ray bursts, Carbon-burning and Explosive neon-burning.

^{*23}Ne(α ,p)²⁶Mg \implies Explosive Ne/C burning (2.3 GK), Convective shell C/Ne burning (1.4 GK).

Importance of Silicon in astrophysics

^{*26}Al(p,
$$\gamma$$
)²⁷Si \longrightarrow Hydrogen-burning.

*²⁶Mg(p, γ)²⁷Al \rightarrow Hydrogen-burning (MgAl cycle). *³¹P(p, γ)²⁸Si *²⁷Al(p, γ)²⁸Si ²⁵Al(p, γ)²⁶Si

- * The structures of ²⁶Si is not well known and it is experementally difficult to reach because they have N<Z.
- * We used its mirror nucleus ²⁶Mg to determine the J^{π} assignments in the neutron deficient isotopes ²⁶Si.
- * We calculated, using the PSDPF interaction, its excitation energies from 0 to ~ 9 Mev.

(ENERGY SPECTRA)

E(Si)		E(Mg)		Shell model		
E _{ex} (MeV)	J^{π}	E _{cx} (MeV)	J^{π}	E _{ex} (MeV)	J^{π}	$\Delta E = Eth - Eexp$
0	0*	0	0*	0	0+1	0
1,797	2+	1,809	2+	1,878	2+1	0,081
2,787	2+	2.938	2+	3,042	2+2	0,255
3,336	0+	3.589	0+	3,829	0+2	0,493
3,758	(3+)	3.942	3+	3,990	3+1	0,232
4,139	2+	4,333	2+	4,590	2 ⁺ 3	0,451
4,188	(3+)	4,350	3+	4,389	3+2	0,201
4,446	(4*)	4,319	4*	4,397	4+1	-0,049
4,797	(4*)	4,901	4*	5,013	4+2	0,216
4,811	(2*)	4,835	2+	4,944	2+4	0,133
4,831	(0*)	4,972	0+	4,909	0 ⁺ 3	0,078
5,148	2+	5,292	2+	5,50	2+5	0,352
5,289	4+	5,476	4+	5,553	4+3	0,264
5,518	(4*)	5,716	4+	5,925	4+4	0,407
5,676	1+	5,691	(1*)	5,693	1+1	0,017
5,890	0+					

(ENERGY SPECTRA)

	1	1	1	1		
5,929	3+	6,125	3+	6,283	3+3	0,354
5,946	(0*)	6,256	0+	6,278	0+4	0,332
6,295	2+	6,745	2+	6,668	2+6	0,373
6,383	(2*)	6,623	(4*)	6,815	4+5	0,432
6,461	0+	6,634		6,668	1^{+}_{2}	0,207
6,766		7,062	1-	6,663	1-1	-0,103
6,787	3-	6,876	3-	6,716	3-1	-0,071
6,811				6,736	2-1	-0,074
6,880	(0*)	7,200	(0,1)+	8,070	0+5	1,190
7,019	(3*)	7,246	3*	7,341	3+4	0,323
7,154	2+	7,100	2+	6,936	2 ⁺ ₇	-0,218
7,199	(5*)	6,978	(5*)	7,086	5+1	-0,112
7,418	(4*)	7,677	(4*)	7,530	4 ⁺ 6	0,112
7,496	2+	7,371	2+	7,214	2 ⁺ 8	-0,282
7,522	(5')	7,396	(5*)	7,447	5 ⁺ 2	-0,075
7,607		7,542	(2)	7,697	2-2	0,091
7,674	(2*)	7,818	(2,3)+	7,575	2+9	-0,099
					-	

(ENERGY SPECTRA)

•						
7,701	(3')	7,349	3-	7,495	3-2	-0,206
7,886	(1)	7,261		7,492	1-2	-0,394
7,921		7,697	1(*)	7,734	1-3	-0,187
7,963		7,283	(4-)	7,898	4-1	-0,064
8,008	(3*)	7,726	3*	7,700	3+5	-0,308
8,144	(1-,2+)	7,428	(0,1)*	7,930	1_{3}^{+}	0,214
8,223	(1)	8,227	1-	8,077	1-4	-0,145
8,254		7,824	3-	7,937	3-3	-0,317
8,269	(2*)	7,840	2+	8,379	2^{+}_{10}	0,110
8,283		7,851		7,951	23	-0,331
8,356	(3*)	8,251	(3*)	8,301	3+6	-0,055
8,431		8,034		8,160	2-4	-0,271
8,558	(2+)	8,052	2(*)	8,993	2+11	0,435
8,689	(1-,2+)	8,576		8,443	1_{4}^{+}	-0,246

(ENERGY SPECTRA)

(ENERGY SPECTRA)

²⁶Si Excitations of interest for thermonuclear ${}^{25}Al(p,\gamma){}^{26}Si$ reaction

- * The ${}^{25}Al(p,\gamma){}^{26}Si$ reaction is important for our understanding of the ${}^{26}Si$ abundance in massive stars.
- * States in ²⁶Si above the proton threshold energies (Sp =5.514 MeV), have an astrophysical interest and play a crucial role in the calculation of the ²⁵Al(p, γ) reaction rate.
- * We propose the J^{π} assignments of states of astrophysical interest as fellow.

²⁶Si Excitations of interest for

thermonuclear ${}^{25}Al(p,\gamma){}^{26}Si$ reaction

E(Si)	E(Si)	Shell model (Si)	Shell model (Si)
E _{FX} (Mev)	Jπ	E _{ex} (Mev)	J ^π i
5,518	(4+)	5,925	4 ⁺ ₄
5,676	1+	5,693	1 ⁺ 1
5,890	0+		
5,929	3+	6,283	3 ⁺ 3
5,946	(O ⁺)	6,278	0 ⁺ 4
7,154	2+	6,936	2 ⁺ 7
7,418	(4+)	7,53	4 ⁺ ₆
7,496	2+	7,214	2 ⁺ 8
7,522	(5 ⁻)	7,447	5 ⁺ 2
7,674	(2+)	7,575	2 ⁺ 9
7,701	(3 ⁻)	7,495	32
8,886	(1 ⁻)	7,492	1°2
8,008	(3+)	7,7	3 ⁺ 5
8,222	(1 ⁻)	8,077	1 ⁻ 4
8,269	(2+)	8,379	2 ⁺ ₁₀
8,356	(3+)	8,301	3 ⁺ 6

Rate of reaction through a narrow resonance

In this case, the resonance energy must be 'near' to the relevant energy range ΔE to contribute to the stellar reaction rate.

The contribution of a single narrow resonance to the stellar reaction rate is given as:

$$N_A \langle \sigma \nu \rangle = 1,54 \times 10^{11} (\mu T_9)^{(-3/2)} (\omega \gamma) \exp\left(\frac{-E_r}{KT}\right) cm^3 s^{-1} mol^{-1}$$

Here T_9 is the temperture in GK, $E_r = E_f - E_i$ is the resonance energy in the center of mass system, the resonance strength in MeV for proton capture is given by:

$$\omega \gamma_{if} = \frac{\left(2J_f + 1\right)}{\left(2J_p + 1\right)\left(2J_i + 1\right)} \frac{\Gamma_{pif}\Gamma_{\gamma f}}{\Gamma_{totalf}}$$

 $\Gamma_{total} = \Gamma_{pif} + \Gamma_{\gamma f}$ is a total width of the resonance level and J_i , J_p and J_f refer to the terget, the proton projectile $(J_p=1/2)$, and states in the final nucleus, respectively, which in turn depends mainly on the total and partial widths of the resonance, and the **reaction rate is determined by the smaller one of the widths**. 17

Rate of reaction through a narrow

resonance

E _{ex} (MeV)	Jπ	Г _р (eV)	$\Gamma_{\gamma}(th)$ (eV)	E _{res} (MeV)	ωγ (th) (eV)
5,676	1 ⁺ 1	1 . 3×10 ⁻⁹	1.20 ×10 ⁻¹	0.162	3 . 25×10 ⁻¹⁰
5,929	3 ⁺ 3	2.9	9.20 ×10 ⁻²	0.415	5.2×10 ⁻²
5,946	0 ⁺ 4	1.9×10 ⁻²	5.70 ×10 ⁻³	0.432	3 . 65×10 ⁻⁴
6,295	2 ⁺ 6	5.06×10 ⁻¹	6.90×10 ⁻²	0.781	2.53 ×10 ⁻²
6,383	4 ⁺ 5	1.22×10 ⁻¹	1.66×10 ⁻²	0.869	1.09×10 ⁻²
6,811	2_1	0.11	2 . 77×10 ⁻¹	1.297	3.28×10 ⁻²
7,019	3 ⁺ 4	8.7×10 ²	2 . 27×10 ⁻¹	1.505	1.32×10 ⁻¹
7,154	2 ⁺ ₇	2 . 7×10 ³	2 . 75×10 ⁻¹	1.640	11 . 46×10 ⁻²
7,418	4 ⁺ ₆	1 . 1×10 ³	3.31×10 ⁻¹	1.904	2.48×10 ⁻¹
7,496	2 ⁺ 8	15 . 9×10 ³	1 . 12×10 ⁻¹	1.982	4.67×10 ⁻²
7,674	2 ⁺ 9	30 . 1×10 ³	5 . 36×10 ⁻¹	2.160	2.23 ×10 ⁻¹
7,701	3_2	41×10 ³	8.39×10 ⁻¹	2.187	4.89×10 ⁻¹
7,886	1_2	22 . 8×10 ³	6.21×10 ⁻¹	2.372	15 . 52×10 ⁻²
8,008	3⁺ ₅	3.6×10 ³	1.75×10 ⁻¹	2.494	10.21 ×10 ⁻²

Electromagnetic properties of states in ²⁶Si

Conclusion

- ▶ ²⁶Si structure is of nuclear astrophysical interest, especially, its J^{π} assignments, Which play a crucial role in the calculation of the ²⁵Al(p,γ) reaction.
- \blacktriangleright Experimentally, the ²⁶Si spectrum is not so well known as the one of ²⁶Mg.
- A comparaison with the mirror nuclei ²⁶Mg is important as well as with shell model using our (0+1) $\hbar\omega$ PSDPF interaction.
- > This study led us to confirm the uncertain states (states with uncertain J^{π}) and to predict J^{π} assignments for the unidentified ones (states with unknown J^{π}). The J^{π} assignments for states of astrophysical interest were also proposed.
- This rp-process reaction rate ²⁵Al(p,γ) is crucial nuclear physics input to astrophysical models of nucleosynthesis in novae, supernovae and explosive hydrogen burning. We calculated it for ²⁶Si.

THANK YOU!