XIV. International Conference on Nuclear Structure Properties, NSP2021 2-4 June 2021, Selcuk University, Konya, Turkey

Collective states of even-even nuclei in $\gamma\text{-rigid}$ quadrupole Hamiltonian with Minimal Length under the sextic potential

I.Tagdamte, M.Oulne and A.El batoul LPHEA, Cadi Ayyad University, Morocco Article accepted for publication in Journal Of Physics G : https://doi.org/10.1088/1361-6471/ac0320

Summary

1 Introduction

- 2 Theory of the model
- 3 Numerical results and discussion
 - Theoretical aspects of the ML for X(3)-Sextic
 - Comparison with experimental data

4 Conclusion

Introduction

Sommaire

2 Theory of the model

3 Numerical results and discussion

Introduction

Sommaire

- 2 Theory of the model
- 3 Numerical results and discussion
- 4 Conclusion

the main aims

- we study the collective states of even-even nuclei in γ-rigid mode within the sextic potential and the Minimal Length (ML) formalism in Bohr–Mottelson model. The eigenvalues problem for this latter is solved by means conjointly of Quasi-Exact Solvability (QES) and a Quantum Perturbation Method (QPM).
- We study the effect of ML on the energy spectra, on the transition rates, on the shape phase transition within an isotopic chain and on the moments of inertia.
- The model is conventionally called X(3)-SML.

The Bohr-Mottelson Hamiltonian [1, 2] :

$$H_{B} = -\frac{\hbar^{2}}{2B} \left[\frac{1}{\beta^{4}} \frac{\partial}{\partial \beta} \beta^{4} \frac{\partial}{\partial \beta} + \frac{1}{\beta^{2} \sin 3\gamma} \frac{\partial}{\partial \gamma} \sin 3\gamma \frac{\partial}{\partial \gamma} - \frac{1}{4\beta^{2}} \sum_{k=1,2,3} \frac{Q_{k}^{2}}{\sin^{2} \left(\gamma - \frac{2}{3}\pi k\right)} \right] + V(\beta,\gamma), \quad (1)$$

The Minimal Length or Generalized Uncertainty Principle (GUP)

$$[\hat{X}, \hat{P}] = i\hbar \left(1 + \alpha^2 \hat{P}^2\right), \qquad (2)$$

Where α represents the ML parameter (is very small positive parameter), this commutation relation leads to the uncertainty relation

$$(\Delta X)(\Delta P) \ge \frac{\hbar}{2} \left(1 + \alpha (\Delta P)^2 + \tau \right), \tau = \alpha \langle \widehat{P} \rangle^2$$
(3)

-Theory of the model

Sommaire

1 Introduction

- 2 Theory of the model
- 3 Numerical results and discussion

-Theory of the model

Sommaire

1 Introduction

2 Theory of the model

3 Numerical results and discussion

4 Conclusion

-Theory of the model

The application of ML to $\gamma-rigid$

$$\left[-\frac{\hbar^2}{2B}\Delta + \frac{\alpha\hbar^4}{2B}\Delta^2 + V(\beta) - E\right]\psi(\beta,\theta,\phi) = 0.$$
 (4)

with

$$\Delta = \frac{1}{\beta^2} \frac{\partial}{\partial \beta} \beta^2 \frac{\partial}{\partial \beta} - \frac{\Delta_{\Omega}}{\beta^2}, \tag{5}$$

where Δ_{Ω} is the angular part of the Laplace operator checking

$$\Delta_{\Omega} Y_{LM}(\theta, \phi) = -\frac{L(L+1)}{3} Y_{LM}(\theta, \phi), \qquad (6)$$

By considering the auxiliary wave function as in [3]

$$\psi(\beta,\theta,\phi) = \left[1 + 2\alpha\hbar^2\Delta\right]F(\beta)Y_{LM}(\theta,\phi),\tag{7}$$

which leads to the following

$$\left[\frac{1}{\beta^2}\frac{d}{d\beta}\beta^2\frac{d}{d\beta} - \frac{L(L+1)}{3\beta^2} + \frac{2B}{\hbar^2}\left(\frac{E-V(\beta)}{1+4B\alpha(E-V(\beta))}\right)\right]F(\beta) = 0.$$
(8)

The expansion of the second term in power series of $\boldsymbol{\alpha}$

$$(1+4B\alpha(E-V(\beta)))^{-1}\simeq 1-4B\alpha(E-V(\beta)), \qquad (9)$$

The radial part becomes :

$$\left[H_{\beta}^{(0)} + H_{\beta}^{(p)}\right]F(\beta) = EF(\beta), \qquad (10)$$

where

$$\begin{cases} H_{\beta}^{(0)} = -\frac{\hbar^2}{2B} \left[\frac{1}{\beta^2} \frac{d}{d\beta} \beta^2 \frac{d}{d\beta} - \frac{L(L+1)}{3\beta^2} - V(\beta) \right] \\ H_{\beta}^{(p)} = 4B\alpha (E - V(\beta))^2 \end{cases}$$
(11)

Solutions of β -equation for $\alpha = 0$ within QES

The Schrödinger picture of the radial equation. This is realized easily by changing the unperturbed wave function $F^{(0)}(\beta)$ by $\frac{\xi(\beta)}{\beta}$:

$$\left[-\frac{d^{2}}{d\beta^{2}} + \frac{L(L+1)}{3\beta^{2}} + v(\beta)\right]\xi(\beta) = \varepsilon\xi(\beta), \varepsilon = \frac{2B}{\hbar^{2}}E, v(\beta) = \frac{2B}{\hbar^{2}}V(\beta)$$
(12)

$$v(\beta) = \left[b^2 - 4a(s + \frac{1}{2} + M')\right]\beta^2 + 2ab\beta^4 + a^2\beta^6$$
(13)
$$\left(2s - \frac{1}{2}\right)(2s - \frac{3}{2}) = \frac{L(L+1)}{3} \equiv s + \frac{1}{2} + M' = const = c.$$
(14)

$$(M', L): (k, 0), (k - 1, 4), (k - 2, 8).... \Rightarrow k + \frac{5}{4} = c_0^{(k)}, (15)$$

 $(M', L): (k, 2), (k - 1, 6), (k - 2, 10).... \Rightarrow k + \frac{7}{4} = c_2^{(k)}. (16)$

Solutions of β -equation for $\alpha = 0$ within QES

The sextic potential equation (12) can be more simplified by reducing the number of parameters through the change of variable $\beta = ya^{-1/4}$ and adopting the notations $\varrho = b/\sqrt{a}$ and $\varepsilon_y = \varepsilon/\sqrt{a}$:

$$\left[-\frac{d^2}{dy^2} + \frac{L(L+1)}{3y^2} + v_m^{(k)}(y)\right]\eta^{(0)}(y) = \varepsilon_y \eta^{(0)}(y)$$
(17)

where,

$$v_m^{(k)}(y) = (\varrho^2 - 4c_m^{(k)})y^2 + 2\varrho y^4 + y^6 + u_m^{(k)}(\varrho) \ m = 0, 2.$$
 (18)

by considering the ansatz function :

$$\eta^{(0)}(y) = \eta^{(0)}_{n,L}(y) = N_{n,L} P^{(M')}_{n,L} \left(y^2 \right) y^{\frac{L}{2}+1} e^{-\frac{y^4}{4} - \frac{yy^2}{2}}, n = 0, 1, 2,$$
(19)

Solutions of β -equation for $\alpha = 0$ within QES

Eq. (17) with potential (18) is reduced to the equation

$$\begin{bmatrix} -\left(\frac{d^2}{dy^2} + \frac{4s'-1}{y}\frac{d}{dy}\right) + 2\varrho\frac{d}{dy} \end{bmatrix} P_{n,L}^{(M')}\left(y^2\right) \\ + 2y^2\left(y\frac{d}{dy} - 2M'\right)P_{n,L}^{(M')}\left(y^2\right) = \lambda P_{n,L}^{(M')}\left(y^2\right) \quad (20)$$

$$\lambda = \lambda_{n,L}^{(k)}(\varrho) = \varepsilon_y - 4bs' - u_m^{(k)}(\varrho) - \frac{1}{\langle y^2 \rangle_{n,L}} \frac{L}{6} \left(\frac{L}{2} - 1\right), \quad (21)$$

Finally,

$$E_{n,L}^{(0)} = E = \frac{\hbar^2 \sqrt{a}}{2B} \left[\lambda_{n,L}^{(k)}(\varrho) + \varrho(L+3) + u_m^{(k)}(\varrho) + \frac{1}{\langle y^2 \rangle_{n,L}} \frac{L}{6} \left(\frac{L}{2} - 1\right) \right]$$
(22)

Correction to the energy spectrum of system by QPM

In the perturbation theory

$$E_{n,L}^{Corr} = E_{n,L}^{(0)} + \Delta E_{n,L},$$
(23)

where

$$\Delta E_{n,L} = \kappa \sqrt{a} \frac{\hbar^4}{B} \bigg[\overline{y^{12}} + 4\varrho \overline{y^{10}} + 2\left(2\varrho^2 + A_m^{(k)}\right) \overline{y^8} + 2\left(2\varrho^2 A_m^{(k)} - \varsigma_{n,L}^{(0)}\right) \overline{y^6} \\ + \left((A_m^{(k)})^2 - 4\varrho \varsigma_{n,L}^{(0)} \right) \overline{y^4} - 2A_m^{(k)} \varsigma_{n,L}^{(0)} \overline{y^2} + \left(u_m^{(k)}(\varrho) - \varsigma_{n,L}^{(0)}\right) \bigg], \quad (24)$$

where
$$A_m^{(k)} = \left(\varrho^2 - 4 c_m^{(k)}\right)$$
,
 $\varsigma_{n,L}^{(0)} = \lambda_{n,L}^{(k)}(\varrho) + \varrho(L+3) + \frac{1}{\langle y^2 \rangle_{n,L}} \frac{L}{6} \left(\frac{L}{2} - 1\right)$, $\kappa = \sqrt{a}\alpha$ is the new ML parameter and $\overline{y^t}(t = 2, 4, 6, 8, 12)$ are the mean value of y^t

-Theory of the model

Correction to the wave function of system by QPM

where

$$\vartheta \left(n, \varrho, \kappa, \varsigma_{n,L}^{(0)}, A_m^{(k)} \right) = 2\kappa \hbar^2 \left[y^{12} + 4\varrho y^{10} + 2 \left(2\varrho^2 + A_m^{(k)} \right) y^8 + 2 \left(2\varrho^2 A_m^{(k)} - \varsigma_{n,L}^{(0)} \right) y^6 + \left((A_m^{(k)})^2 - 4\varrho \varsigma_{n,L}^{(0)} \right) y^4 - 2A_m^{(k)} \varsigma_{n,L}^{(0)} y^2 + \left(u_m^{(k)}(\varrho) - \varsigma_{n,L}^{(0)} \right) \right].$$
(26)

-Numerical results and discussion

Sommaire

1 Introduction

2 Theory of the model

3 Numerical results and discussion

Theoretical aspects of the ML for X(3)-Sextic

-Numerical results and discussion

Sommaire

1 Introduction

2 Theory of the model

- 3 Numerical results and discussion
 - Theoretical aspects of the ML for X(3)-Sextic
 - Comparison with experimental data

4 Conclusion

-Numerical results and discussion

-Theoretical aspects of the ML for X(3)-Sextic

 $R_{n,L}$ and $B(E_2)$

$$R_{n,L} = \frac{E_{n,L}^{Corr} - E_{0,0}^{Corr}}{E_{0,2}^{Corr} - E_{0,0}^{Corr}}$$
(27)

$$B(E_2) = T_{n,L,n',L'} = \frac{B\left(E2; n; L \to n', L'\right)}{B\left(E2; 0; 2 \to 0, 0\right)} = \left(\frac{C_{0,0,0}^{L2L'} I_{n,L,n',L'}^{Corr}}{C_{0,0,0}^{220} I_{0,2,0,0}^{Corr}}\right)^2,$$
(28)
where the radial matrix element $I_{n,L,n',L'}^{Corr}$ can be given either in β
or v variable :

$$I_{n,L,n',L'}^{Corr} = \int_{0}^{+\infty} F_{n,L}^{Corr}(\beta) \beta F_{n',L'}^{Corr}(\beta) \beta^{2} d\beta$$
$$= a^{-1/4} \int_{0}^{+\infty} \eta_{n,L}^{Corr}(y) y \eta_{n',L'}^{Corr}(\beta) dy.$$
(29)

- Numerical results and discussion
 - -Theoretical aspects of the ML for X(3)-Sextic

The sextic potential

FIGURE: The shape evolution of the sextic potential $v_0^{(2)}(y)$, given by (18), as a function of the parameter ρ for $c_0^{(2)} = \frac{13}{4}$ and $u_0^{(2)} = 0$.

- -Numerical results and discussion
 - Theoretical aspects of the ML for X(3)-Sextic

The energy spectra

-Numerical results and discussion

- Theoretical aspects of the ML for X(3)-Sextic

$R_{n,L}$ and $B(E_2)$ in ϱ_c

 $\rho_c = 3.647$; $\kappa = 0.000$ $\rho_c = 3.646$; $\kappa = 0.001$ $(n=2)\beta_2$ (n=0) g.s $(n=1)\beta$ $(n=2)\beta_2$ $(n=1) \beta_1$ $\rho_c = 3.453$; $\kappa = 0.1$ $\rho_c = 3.632$; $\kappa = 0.01$ 18,498 17 506 1 ŝ 4.21 13.077 11.651 4.344 11.294 11.041 10.721 6 255 (n=0) g.s $(n=1) B_1$ (n=2) B₂ (n=0) g.s $(n=1) \beta_1$ $(n=2)\beta_2$

The ML eliminate partially this approximate degeneracy.

- -Numerical results and discussion
 - Theoretical aspects of the ML for X(3)-Sextic

The corrected wave function

As a result the value ($\kappa = 0.03$) shows the limitation of the perturbation term.

- -Numerical results and discussion
 - Comparison with experimental data

Energy Spectrum

Nuclei	JS	R _{0,4}	$R_{1,0}$	R _{2,0}	σ	ρ	κ
¹¹⁶ Xe	Exp	2.33					
	X(3)	2.44	2.87	7.65	2.48	-	0.0
	X(3)-S	2.28	2.25	4.75	0.72	6.62	0.0
	X(3)-SML	2.20	2.16	4.69	0.68	18.30	0.0016
¹¹⁸ Xe	Exp	2.40	2.46	(5.10)			
	X(3)	2.44	2.87	7.65	0.99	-	0.0
	X(3)-S	2.61	2.71	6.01	0.49	4.16	0.0
	X(3)-SML	2.35	2.41	5.84	0.29	14.96	0.0070
¹²⁰ Xe	Exp	2.47	2.82	(6.93)			
	X(3)	2.44	2.87	7.65	0.99	-	0.0
	X(3)-S	2.73	2.88	6.45	0.57	3.79	0.0
	X(3)-SML	2.40	2.50	6.22	0.36	14.89	0.0097
¹²² Xe	Exp	2.50	3.47	(7.63)			
	X(3)	2.44	2.87	7.65	0.36	-	0.0
	X(3)-S	2.63	3.29	7.72	0.30	2.11	0.0
	X(3)-SML	2.72	3.13	7.56	0.23	2.71	0.0020

-Numerical results and discussion

Comparison with experimental data

Energy Spectrum

Nuclei	ıs	R _{0,4}	$R_{1,0}$	$R_{2,0}$	σ	ρ	κ
¹²⁴ Xe	Exp	2.48	3.58	(6.70)			
	X(3)	2.44	2.87	7.65	0.71	-	0.0
	X(3)-S	2.70	3.01	6.91	0.53	2.99	0.0
	X(3)-SML	2.44	2.57	6.54	0.49	13.03	0.0132
¹²⁶ Xe	Exp	2.42	3.38	(6.57)			
	X(3)	2.44	2.87	7.65	0.85	-	0.0
	X(3)-S	2.72	2.86	6.40	0.55	3.83	0.0
	X(3)-SML	2.38	2.48	6.12	0.47	14.92	0.0090
¹²⁸ Xe	Exp	2.33	3.57	(5.87)			
	X(3)	2.44	2.87	7.65	0.77	-	0.0
	X(3)-S	2.66	2.78	6.19	0.44	4.00	0.0
	X(3)-SML	2.66	2.78	6.19	0.44	4.00	0.0
¹³⁰ Xe	Exp	2.25					
	X(3)	2.44	2.87	7.65	0.77	-	0.0
	X(3)-S	2.41	2.43	5.26	0.55	5.18	0.0
	X(3)-SML	2.41	2.43	5.26	0.55	5.18	0.0

-Numerical results and discussion

Comparison with experimental data

Energy Spectrum

Nuclei	IS	R _{0,4}	$R_{1,0}$	$R_{2,0}$	σ	ρ	κ
¹⁰⁰ Mo	Exp	2.12	1.30				
	X(3)	2.44	2.87	7.65	1.63	-	0.0
	X(3)-S	2.20	2.14	4.44	0.43	8.63	0.0
	X(3)-SML	2.15	2.10	4.43	0.39	38.20	0.0005
¹⁰² Mo	Exp	2.51	2.35				
	X(3)	2.44	2.87	7.65	0.56	-	0.0
	X(3)-S	2.67	3.09	7.16	0.63	2.65	0.0
	X(3)-SML	2.59	2.72	6.99	0.27	5.32	0.0104
⁹⁸ Ru	Exp	2.14	2.03				
	X(3)	2.44	2.87	7.65	1.48	-	0.0
	X(3)-S	2.21	2.15	4.46	0.1	8.44	0.0
	X(3)-SML	2.17	2.12	4.47	0.04	16.00	0.0010
¹⁰⁰ Ru	Exp	2.27	2.10				
	X(3)	2.44	2.87	7.65	0.65	-	0.0
	X(3)-S	2.58	2.66	5.89	0.37	4.28	0.0
	X(3)-SML	2.33	2.37	5.60	0.14	10.95	0.006

- -Numerical results and discussion
 - Comparison with experimental data

Energy Spectrum

Nuclei	JS	$R_{0,4}$	$R_{1,0}$	$R_{2,0}$	σ	ρ	κ
¹⁰² Ru	Exp	2.33	1.99				
	X(3)	2.44	2.87	7.65	0.86	-	0.0
	X(3)-S	2.50	2.55	5.59	0.28	4.63	0.0
	X(3)-SML	2.32	2.36	5.39	0.17	12.68	0.0057
¹⁰⁴ Ru	Exp	2.48	(2.76)				
	X(3)	2.44	2.87	7.65	0.69	-	0.0
	X(3)-S	2.74	2.92	6.58	0.40	3.62	0.0
	X(3)-SML	2.53	2.62	6.47	0.25	5.42	0.0071
¹⁰⁶ Ru	Exp	2.66	3.67				
	X(3)	2.44	2.87	7.65	0.83	-	0.0
	X(3)-S	2.55	4.10	9.36	0.34	1.16	0.0
	X(3)-SML	2.65	3.67	9.03	0.13	1.61	0.0027
¹⁰⁸ Ru	Exp	2.75	4.03				
	X(3)	2.44	2.87	7.65	1.51	-	0.0
	X(3)-S	2.49	4.75	10.43	0.83	0.73	0.0
	X(3)-SML	2.67	4.01	10.29	0.16	1.27	0.0061

- -Numerical results and discussion
 - Comparison with experimental data

Energy Spectrum

Nuclei	JS	R _{0,4}	$R_{1,0}$	$R_{2,0}$	σ	ρ	κ
¹³² Ce	Exp	2.64	3.56				
	X(3)	2.44	2.87	7.65	0.79	-	0.0
	X(3)-S	2.65	3.18	7.43	0.70	2.36	0.0
	X(3)-SML	2.49	2.66	6.95	0.55	16.11	0.0173
¹³⁴ Ce	Exp	2.56	3.75				
	X(3)	2.44	2.87	7.65	0.46	-	0.0
	X(3)-S	2.61	3.42	8.01	0.26	1.89	0.0
	X(3)-SML	2.65	3.32	7.95	0.24	2.10	0.0010
¹⁷² Os	Exp	2.66	3.33				
	X(3)	2.44	2.87	7.65	1.58	-	0.0
	X(3)-S	2.65	2.77	6.16	0.77	4.02	0.0
	X(3)-SML	2.35	2.41	5.78	0.70	11.17	0.0072
¹⁸⁰ Pt	Exp	2.68	3.12	(7.69)			
	X(3)	2.44	2.87	7.65	1.03	-	0.0
	X(3)-S	2.56	3.92	9.03	0.69	1.31	0.0
	X(3)-SML	2.86	3.22	8.52	0.27	3.05	0.0085

- -Numerical results and discussion
 - Comparison with experimental data

Energy Spectrum

Nuclei	JS	R _{0,4}	$R_{1,0}$	$R_{2,0}$	σ	ρ	κ
¹⁸² Pt	Exp	2.71	3.22	(7.43)			
	X(3)	2.44	2.87	7.65	1.04	-	0.0
	X(3)-S	2.57	3.88	8.95	0.72	1.35	0.0
	X(3)-SML	2.90	3.17	8.37	0.28	3.67	0.0099
¹⁸⁴ Pt	Exp	2.67	3.02				
	X(3)	2.44	2.87	7.65	0.83	-	0.0
	X(3)-S	2.57	3.79	8.77	0.65	1.44	0.0
	X(3)-SML	2.85	3.18	8.33	0.23	3.18	0.0078
¹⁸⁶ Pt	Exp	2.56	2.46				
	X(3)	2.44	2.87	7.65	0.92	-	0.0
	X(3)-S	2.68	3.04	7.03	0.62	2.28	0.0
	X(3)-SML	2.56	2.69	6.88	0.40	5.59	0.0105
¹⁸⁸ Pt	Exp	2.53	3.01				
	X(3)	2.44	2.87	7.65	0.36	-	0.0
	X(3)-S	2.65	3.17	7.39	0.38	2.40	0.0
	X(3)-SML	2.63	2.77	7.00	0.15	4.76	0.0082

- -Numerical results and discussion
 - Comparison with experimental data

Energy Spectrum

Nuclei	JS	$R_{0,4}$	$R_{1,0}$	R _{2,0}	σ	ρ	κ
¹⁹⁴ Pt	Exp	2.47	3.23				
	X(3)	2.44	2.87	7.65	0.18	-	0.0
	X(3)-S	2.64	3.86	7.55	0.19	2.25	0.0
	X(3)-SML	2.67	3.13	7.30	0.16	2.53	0.0002
¹⁹⁶ Pt	Exp	2.47	3.19				
	X(3)	2.44	2.87	7.65	0.44	-	0.0
	X(3)-S	2.72	2.96	6.76	0.33	3.25	0.0
	X(3)-SML	2.61	2.73	6.55	0.26	4.53	0.0043
¹⁴⁶ Nd	Exp	2.30	2.02				
	X(3)	2.44	2.87	7.65	1.67	-	0.0
	X(3)-S	2.34	2.32	4.96	0.64	5.88	0.0
	X(3)-SML	2.24	2.22	4.93	0.57	13.12	0.0026
¹⁴⁸ Nd	Exp	2.49	3.04	(5.30)			
	X(3)	2.44	2.87	7.65	1.40	-	0.0
	X(3)-S	2.61	2.71	6.02	0.39	4.15	0.0
	X(3)-SML	2.52	2.59	5.99	0.38	4.82	0.0025

-Numerical results and discussion

Comparison with experimental data

Energy Spectrum

Nucleus		R _{0,4}	$R_{1,0}$	R _{2,0}	σ	ρ	κ
¹⁵⁰ Nd	Exp	2.93	5.19	(13.35)			
Х	(3)	2.44	2.87	7.65	2.00	-	0.0
Х	(3)-S	2.49	4.75	10.43	1.10	0.73	0.0
Х	(3)-SML	2.73	3.78	10.00	0.80	1.56	0.0074
¹⁵⁰ Sm	Exp	2.32	2.22	(3.76)			
Х	(3)	2.44	2.87	7.65	1.98	-	0.0
Х	(3)-S	2.36	2.36	5.07	0.41	5.58	0.0
Х	(3)-SML	2.23	2.22	4.95	0.33	21.80	0.0021
¹⁵² Sm	Exp	3.01	5.62	8.89			
Х	(3)	2.44	2.87	7.65	1.62	-	0.0
Х	(3)-S	2.55	4.10	9.36	1.59	1.16	0.0
Х	(3)-SML	2.95	3.24	8.91	1.26	3.70	0.0287

-Numerical results and discussion

Comparison with experimental data

Energy Spectrum

Nucleu	IS	R _{0,4} R	1,0 R _{2,0}	σ	ρ	κ
¹⁵⁴ Gd	Exp	3.01 5.	53 9.60			
	X(3)	2.44 2.	87 7.65	1.51	-	0.0
	X(3)-S	2.53 4.	33 9.75	1.51	0.99	0.0
	X(3)-SML	2.97 3.	28 9.21	1.14	3.68	0.0165
¹⁵⁶ Dy	Exp	2.93 4.	90 10.00			
	X(3)	2.44 2.	87 7.65	1.28	-	0.0
	X(3)-S	2.53 4.	31 9.71	1.28	1.01	0.0
	X(3)-SML	2.96 3.	26 9.04	0.99	3.65	0.0148

- -Numerical results and discussion
 - Comparison with experimental data

The ML effect on the shape phase transition

Collective states of even-even nuclei in γ -rigid quadrupole Hamil

-Numerical results and discussion

Comparison with experimental data

The moment of inertia of the ground state

The moment of inertia of the ground state [4] :

$$\theta(L) = \frac{R}{\omega} = \frac{1}{2} \frac{dE}{dR^2} \approx \frac{2L - 1}{E(L) - E(L - 2)}, R^2 = L(L + 1).$$
(30)

Conclusion

Sommaire

1 Introduction

- **2** Theory of the model
- 3 Numerical results and discussion

Conclusion

Sommaire

1 Introduction

2 Theory of the model

3 Numerical results and discussion

4 Conclusion

- Conclusion

Conclusion

- The Bohr-Mottelson Hamiltonian in the γ-rigid regime within the Minimal Length (ML) formalism with sextic potential have been solved conjointly by mens of QES and QPM.
- The new elaborated model has allowed us to reproduce well the experimental data for energy ratios, transition rates and moments of inertia.
- the ML removed partially the degeneracy of states with different angular momenta $\Delta L = 2$ belonging to different bands in the critical point.
- The ML changed dramatically the shape phase transition within an isotopic chain.

Conclusion

Perspectives

- consider the quasi-exact solvability orders k > 2 for X(3)-Sextic in the presence of ML and to verify whether the theoretical results will be improved more than in the case of k=2.
- correct the energies and the wave functions to the second order instead of the first one, and to study its effect on the energy ratios and transition rates.

- Conclusion

References

References

- Bohr A 1952 Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 26 no. 14
- Bohr A and Mottelson B 1953 *Mat. Fys. Medd. K. Dan. Vidensk.Selsk.* **27** no. 16
- Haouat S 2014 Phys. Lett. B 729 33.
- Ring P and Schuck P 1980 The Nuclear Many-Body Problem (Springer, Berlin)
- M. Chabab, A. El Batoul, A. Lahbas, M. Oulne. (2016) Physics Letters B 758, 212-218.