

SELCUK UNIVERSITY Faculty of Science

XIV. International Conference On Nuclear Structure Properties

We are pleased to announce the XIV. International Conference on Nuclear Structure Properties, NSP2021 to be held as online meeting on 2-4 June 2021 in Selcuk University, Konya, TURKEY.

2-4 June 2021

Conference web page: http://nsp2021.selcuk.edu.tr

XIV INTERNATIONAL CONFERENCE ON NUCLEAR STRUCTURE PROPERTIES 2 – 4 JUNE 2021 SELCUK UNIVERSITY, KONYA ,TURKEY

Role of nuclear tensor force within Skyrme mean-field approach on deformed magic numbers in rare earth region

DR. KOH MENG HOCK

DEPARTMENT OF PHYSICS FACULTY OF SCIENCE, UNIVERSITI TEKNOLOGI MALAYSIA

Solar abundancy around mass number 165

Studies on deformed magic numbers

BRIEF ACCOUNT OF EXPERİMENTAL WORK

Progress on the experimental side

PHYSICAL REVIEW LETTERS 120, 182502 (2018)

Masses and β -Decay Spectroscopy of Neutron-Rich Odd-Odd ^{160,162}Eu Nuclei: Evidence for a Subshell Gap with Large Deformation at N = 98

Cur. Phys. J. A (2019) 55 : 19 DOI 10.1140/epja/i2019-12677-6	THE EUROPEAN PHYSICAL JOURNAL A
Review	

Nuclear decay studies of rare isotopes

Overview of decay spectroscopy at RIBF

Skyrme force with and without tensor

Skyrme Hamiltonian density

$$\mathcal{H} = B_1 \rho^2 + B_3 (\rho \tau - \mathbf{j}^2) + B_5 \rho \Delta \rho + B_7 \rho^{2+\alpha} + B_9 (\rho \nabla \cdot \mathbf{J} + \mathbf{j} \cdot \nabla \times \mathbf{s}) + B_{10} \mathbf{s}^2 + B_{12} \rho^{\alpha} \mathbf{s}^2 + B_{14} \left(\sum_{\mu,\nu=x}^{z} \mathbf{J}_{\mu\nu} \mathbf{J}_{\mu\nu} - \mathbf{s} \cdot \mathbf{T} \right) + B_{16} \left[\left(\sum_{\mu=x}^{z} \mathbf{J}_{\mu\mu} \right)^2 + \left(\sum_{\mu,\nu=x}^{z} \mathbf{J}_{\mu\nu} \mathbf{J}_{\nu\mu} - 2 \mathbf{s} \cdot \mathbf{F} \right) \right] + B_{18} \mathbf{s} \cdot \Delta \mathbf{s} + B_{20} (\nabla \cdot \mathbf{s})^2$$

$$\mathcal{H}_{q} = B_{2} \rho_{q}^{2} + B_{4} \left(\rho_{q} \tau_{q} - \mathbf{j}_{q}^{2}\right) + B_{6} \rho_{q} \Delta \rho_{q} + B_{8} \rho_{0}^{\alpha} \rho_{q}^{2} + B_{9_{q}} (\rho_{q} \nabla \cdot \mathbf{J}_{q} + \mathbf{j}_{q} \cdot \nabla \times \mathbf{s}_{q}) + B_{11} \mathbf{s}_{q}^{2} + B_{13} \rho^{\alpha} \mathbf{s}_{q}^{2} = B_{15} \left(\sum_{\mu,\nu=x}^{z} \mathbf{J}_{q,\mu\nu} \mathbf{J}_{q,\mu\nu} - \mathbf{s}_{q} \cdot \mathbf{T}_{q}\right) = B_{17} \left[\left(\sum_{\mu=x}^{z} \mathbf{J}_{q,\mu\mu}\right)^{2} + \left(\sum_{\mu,\nu=x}^{z} \mathbf{J}_{q,\mu\nu} \mathbf{J}_{q,\nu\mu} - 2 \mathbf{s}_{q} \cdot \mathbf{F}_{q}\right) \right] + B_{19} \mathbf{s}_{q} \cdot \Delta \mathbf{s}_{q} + B_{21} (\nabla \cdot \mathbf{s}_{q})^{2}$$

Skyrme Hamiltonian density

Skyrme forces with tensor

Skyrme forces with tensor

Increasing like-particle tensor coupling

Full refit Refit of all original 10 parameters 2 tensor parameters PHYSICAL REVIEW C 76, 014312 (2007) Tensor part of the Skyrme energy density functional: Spherical nuclei T. Lesinski,^{1,*} M. Bender,^{2,3,†} K. Bennaceur,^{1,2} T. Duguet,⁴ and J. Meyer¹ ¹Université de Lyon, F-69003 Lyon, France; Institut de Physique Nucléaire de Lyon, CNRS/IN2P3, Université Lyon 1, F-69622 Nleurbanne, Frapee ²DSM/DAPNIA/SPhN, CEA Saclary F-9(19) Gif-sur-Yvette Cedex, France ³Université Bordeaux 1; CNRS/IN2P3; Centre d'Étades Nuclégires de Bordeaux Gradignan, UMR5797, Chemin du Solarium, BP120, F-33175 Gradignan, France ⁴National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University East Lansing, Michigan 48824, USA (Received 5 April 2007; published 26 July 2007)

Two-neutron separation energy differential

RESULTS

Experimental two-neutron separation energy differential

Two-neutron separation energy differential -Increasing np tensor coupling

Two-neutron separation energy differential -Increasing nn and pp tensor coupling

-

.

-

-

Extracting the tensor contribution

RESULTS

Contribution of tensor and non-tensor EDF terms to S2n differential T26 vs T22 vs T62 (Experimental peak at N = 104)

Contribution of tensor and non-tensor EDF terms to S2n differential T26 vs T22 vs T62 (Lighter RE at N = 98 and N = 102)

Summary

ROLE OF NUCLEAR TENSOR ON DEFORMED NUMBERS IN RARE EARTH NUCLEI

Key message to take home...

 Neutron magicity in heavy rare earth nuclei (Z > 66) – Strong neutron-proton tensor coupling is needed

- 2. Light rare earth nuclei ($Z \le 66$)
 - a) Magicity at N = 98 and N = 102 is not reproduced, but ...
 - b) Increasing like-particle (nn and pp) tensor coupling might be the key ingredient
- 3. More experimental data are needed for example in
 - a. lighter (Z \leq 62) and heavier (Z \geq 72)
 - b. the whole RE region in general to verify sometimes conflicting data (BE, half-life, excitation energy levels)

Questions or comments?

