o

& e, N3

S EE TR

= <]

L - |m » KTO KARATAY

TUBITAK “. S oNi i
——— “ 1955  UNIVERSITESI

Machine Learning Approach in
Particle Pair Investigation

Serpil Yalcin Kuzu*, Ayben Karasu Uysal
Department of Physics, Firat University

XIV. International Conference on Nuclear Structure Properties

(NSP2021)
2-4 June, 2021



OUTLINE

A Motivation
I Picture of Heavy lon Collisions
I Whydielectron®
I Why Machine Learning (ML)?
A Analysis:
I Model: Random Forest Classifier

I Experimental Setup
A Data Set
A Application of Model

A Results
I ROC AUC Interpretation
I Precision, Recall and1FScores

A Conclusions

2—4June 2021 S. Yalcin Kuzu - NSP2021 2




0 Motivation 0 Analysis 0 Results
A Heavy lon Collisions A Model: Random Forest Classifier A ROC AUC Interpretation/ PrecisjdRecall and-£ Scores
A WhyDielectron® Why Machine Learning? A Experimental Setup: Data/ Application of Model 0 Conclusions

Heavy lon Collisions

Hadron Gas

7,= 1 fm/c
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1. Initial state
- ions travelling with velocity near the
speed of light
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~1 fm/c speed of light
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(collective evolution) that
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(critical temperature) is
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4. At T, partons freeze
out into hadrons. The
hadron gas expands
until inelastic
collisions stop at the
chemical freeze-out

(Tch)-
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3. An expansiomf the system
(collective evolution) that
cools down until thehase-
transition temperature T,
(critical temperature) is
reached.

2. QGP formation
- pre-equilibrium and thermalization
~1 fm/c
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Heavy lon Collisions

5. The particle yields are fixed. Elastic collision
stop when thekinetic freeze-out is reached.

* e

4. At T, partons freeze
out into hadrons. The
hadron gas expands adron Gz
until inelastic 3. An expansiomf the system
collisions stop at the (collective evolution) that
chemical freeze-out cools down until thehase-
(Th)- transition temperature T,
(critical temperature) is
7,= 1 fm/c reached.
-
@* & | %, ”@ z
2. QGP formation 1. Initial state
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~1 fm/c speed of light
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Heavy lon Collisions

6. The particles leave the collision aret 5. The particle yields are fixed. Elastic coIIisionI

and can be detected by detectors. stop when thekinetic freeze-out is reached.

Freeze-Out t /
] T

4. At T, partons freeze
out into hadrons. The
hadron gas expands adron Gz
until inelastic 3. An expansiomf the system
collisions stop at the (collective evolution) that
chemical freeze-out cools down until thehase-
(Th)- transition temperature T,
(critical temperature) is
7,= 1 fm/c reached.
-
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2. QGP formation 1. Initial state
- pre-equilibrium and thermalization - ions travelling with velocity near the
~1 fm/c speed of light
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Why Dielectrons?

Electronpositron pairgdielectrons) are the
unique tools to studvolutionof medium

created inthe collisions
A Due to lack of strong interactions they can be
used to probehe inner regions of collisions
o0 no in medium effects odielectrons
A They are produced at all stages of the collisior
0 provide information abouthe whole 2
spacetime evolutionof the system. .

m°,n Dalitz-decays

dN,, / dydm

P,Ww

Drell-Yan .

" Low- | Intermediate- :  High-Mass Region ]
F >10fm | >1fm <0.1fm E
§_I L L \gl L 1 L L I 1 L |E| | L 'l 1 L | L L L J_§
0 1 2 3 4 5

mass [GercZ]

Thedielectronspectrumas afunction of invariant mass in
ultra-relativistic heavyion collisions [1].
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Why Dielectrons?

Electronpositron pairgdielectrons) are the
unique tools to studvolutionof medium

created inthe collisions
A Due to lack of strong interactions they can be
used to probehe inner regions of collisions
0 no in medium effects odielectrons
A They are produced at all stages of the collisior
0 provide information abouthe whole

m°,n Dalitz-decays

dN,, / dydm

spacetime evolutionof the system. : ; v :

‘ ‘ Drell-Yan '

_Ther_e IS an approximatemne o_rdermgln the " Low | Intermediate- | High-Mass Region

Invariant mass of electron pairs: foem o o sem

A pairs with larger masses are produceskly 0 .- 2 > 4 =

stage of the collision. _-=" . mass(eevie]
. S - Thedielectronspectrumas afunction of invariant mass in
o Information aboutnitial state of the ultra-relativistic heavyion collisions [1].

medium!!!
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Why Machine Learning?

Ahigh purity sampl®f electronpositron pairs is
required to measure theielectronspectrum.

m°,n Dalitz-decays

dN,, / dydm

In dielectronanalysesyarious sources of
backgroundhat are larger than pair signal by a
few orders of magnitude have to be considerec

Rejection of those background components
requiressophisticated analysis techniques

Drell-Yan '

A Traditional methods can provide high purity ! 1
samples witHow signal efficiency: . On o Intemmediale- - Han-Mass egon

0 QGP parameters can not be determinec = F———F———F—F 13
due tothe high systematic uncertainties mass [GeV/c’]

Thedielectronspectrumas afunction of invariant mass in
ultra-relativistic heawvyion collisions [1].

Artificial intelligencebased machine learning
tools for pair identification could be used to
improvedielectronspectrum with high efficiency
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Model: Random Forest Classifier

A The model
0 reproduces a set of Decision Trees
0 regroups the votes from various Decision Trees to estimate the final class

A To make a prediction
o for regression: average the results
o for classification: majority vote

i
: DATASET
|  memmmmmmmm—-- "
: DECISION TREE 1 1
|__________________,_.=-""'-----
II F .
1 [
p L ] ]
(! S
H % 7N & N
! / N / \\ K "
:: yd N i S i ~
" L] L1 L L L
h . \ = F
: : //\ //X " ///\\ //’ \\\ & // \
! Vi L / \,
Inisinlisisl I=gsh Isis
I
:.I-.-.;;".'"ar;—_._j ....................................... i e e i :
PREDICTION PREDICTION PREDICTION
‘ i . ‘
‘ MAJORITY VOTE TAKEN | ’{ FINAL PREDICTION MADE ‘

Schema of Random forest classifier algorithm [2].
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[ ] [
Model: Random Forest Classifier
[ ]

0 reproduces a set of Decision Trees
0 regroups the votes from various Decision Trees to estimate the final class

A To make a prediction
o for regression: average the results
o for classification: majority vote I |

Advantages of the Model: R
A Used for bothclassificatiorand regression]. 2252 = =

A Resistant taoverfitting. :: LAJ : LJ ﬁJ

A Interpretable:Measure the relative 2N AN // ‘\
importance of each feature on the o |‘ | | " “ | ‘ s
prediction. N 75, 7~

A More accurate compared to other E_ﬁfiii[ﬁL _____ ﬁ Emt
algorithms F'I;’-I-EE;CTION @ @

Disadvantages of the Model:

A More resourcesare required for
computation.

A Requiredong time

[ MAJORITY VOTE TAKEN | *{ FINAL PREDICTION MADE ‘

Schema of Random forest classifier algorithm [2].
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Experimental Setup: Data Set

LHC 201d@ielectrondata set is used: 99912 pairs for inv. massla0 GeV/e
0 56968dielectron(ee?) pairs signal (57%)
0 42944 ee or e*e* pairs:background (43%)
Signal% ° Background%

4000 Inv. Mass Distribution of Dielectron Pairs from 2-110 GeV/c?

A Features used for pair classificatic .. |

High Level Features (HLF) 000 | i
J1,0 (charge) 2500
h,, h,(pseudorapidity f 2000
@1, @, (azimuthal angle) N 1500 :
P1, P, (Momentum) o
M (invariantmass of pairs ~ H“H - H
" (momentum opalr9 0 HHHHHHHllllllnnnnnmmnanH lhh
g (openingangle) 0 2 40 . [ﬁgewc__)] 80 100 120

A Pythonimplementation of the RandorRorest classifier providday scikit
learnpackage is used fadentificationof e*e pairs.
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Experimental Setup: Application of Model
P p: App
- Feature importances
0.16

A To understand the impact oflL on

classification oflielectronpairs , the
classifier is trained by using HLF to see: **
o If HLFare good enough for
distcriminatepairs. ’
o ifthehighest importancdeature ’
matches with the used onas
traditional method.
o if the pairs derived with the

=]

8

=

5

L]

=

4

(1]

=]

2

0.00

& = = % @ = & o
v = - 5 3 o = =)

higheSt efﬁCienC'y High Level Features (HLF)
B 1,0 (charge)
A Hyper parameters of the classifiers h,, h,(pseudorapidity

were tuned to have best classification. 0., ©, (azimuthal angle)

_ _ P;, P, (Momentum)
A Train-test sample selection:

0 60% Train and 40% Test

M (invariantmass of pairs
P (momentum opair9

g (openingangle)
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Results: ROC AUC Interpretation

Pair identification efficiency and purity are studied by:

A Precision:

A Recall;

A F1 Score:

A K Zagcurate yoursignal predictions”

True Positive

Byusing RFC with HLF to fig@ pairs:
- The model ha$7.7% chance tdistinguish
betweensignal and background.
- The classifiereaches a recall of roughiy%o

without any falsepositivepredictions
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0.8

a K 2ggodyour model tofind all the actuala A 3 yil,, f

0.4

0.2

Receiver operating characteristic curve

0.0

0.0

1.0 —

0.8

0.6

0.4

0.2

0.0

0.0

—— ROC curve (AUC = 0.977)
() threshold at 0.47

02 0.4 0.6 0.8 1.0
False Positive Rate

Precision-Recall Curve

—— Precision-recall curve of signal class (area = 0.97)
() threshold at 0.47

02 04 0.6 0.8 1.0
Recal R=T,/(T, + F.)
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Results: ROC AUC Interpretation
Pair identification efficiency and purity are studied by:
A Precision: & K 2agécurate yoursignal predictions”
A Recall: & K 2ggodyour model tofind all the actuala A 3 ygl,,f 4
A F1 Score: —=

By using RFC with HLF to faie pairs: D sty

- The model haS7.7% chance tdistinguish
betweensignal and background.
- The classifiereaches a recall of roughiy%o
without any falsepositivepredictions .
RFC with HLF shawecise and sensitivesults. ¢ =
Features Avg. Precision  Avg. Recall Avg. F-1 Score
HLF 0.93 0.92 0.92 B il i

Recall R=T,/(T, + F,.)
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Conclusions

Random Forest Classifier model is applied fergair identification produced
In high energy collisions to understand early stage of universe.

0 Conclusions

The results are showed:
A Selection of the features fagignal classification in RF model laasimportant
role onpair identification.
A Dielectronsare identifiedwith Random Forest Classifier:
A with higher precision and sensitivity.
A by using the features used in traditional method.
A Without hardand time consuming background analysis the pairs can be
identified with high efficiency.
A With Random Forest classifier has 97.7% chance to discrindigléetron
pairs in the right way.

Application of machinéarningtechniques is promising and may incredise
guality ofparticle physics results.
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